Next Generation 인터페이스 테크놀로지 트렌드

(USB3.1, HDMI2.0, MHL3.2)

텍트로닉스 박영준 부장

Agenda

- USB3.1 Compliance Test update
 - What's different for USB3.1
 - Transmitter and Receiver Compliance Test
- HDMI2.0, MHL3.2 overview
- Q & A

What's different for USB3.1

USB 3.1 Comparison

	Gen1	Gen2
Data Rate	5 Gb/s	10 Gb/s
Encoding	8b/10b	128b/132b
Target Channel	3m + Host/ Device channels (-17dB, 2.5 GHz)	1m + board ref channels (-23dB, 5 GHz)
LTSSM	LFPS, TSEQ, TS1, TS2	LFPSPlus, SCD, TSEQ, TS1, TS2,
Reference Tx EQ	De-emphasis	3-tap (Preshoot/De-emphasis)
Reference Rx EQ	CTLE	CTLE(6 level) + 1-tap DFE
JTF Bandwidth	4.9 MHz	7.5 MHz
Eye Height (TP1)	100 mV	70 mV
TJ@BER	132 ps (0.66 UI)	71 ps (0.714 UI)
Backwards Compatibility	Υ	Υ
Connector	Std A	Improved Std A with insertion detect

* SCD: Speed Capability Declaration

USB 3.1 Key Considerations – Long Channel

- Channel characteristics
 - 8.5dB loss host PCB route
 - 8.5dB loss device PCB route
 - 1m cable
- Cause Frequency dependent loss (ISI) and Crosstalk
- Close the 10Gb/s eye

USB 3.1 Key Considerations – TX,RX Equalization

Transmitter Equalization

igure 6-17. Tx Compliance Rx EQ Transfer Fu

- 2.2 dB Preshoot
- -3.1 dB De-emphasis

- Receiver Equalization
 - multiple CTLE gain settings
 - 1-tap DFE

TP1

Figure 6-19. Tx Normative Setup with Reference Channel

U-026

Source: USB DevCon

New Channel Budget of USB3.1

- Target 23 dB @ 5 GHz loss budget (die-to-die)
- Equal channel allocation for host/device
- Tx EQ settings recommended (normative)
 - 2.2 dB Preshoot and -3.1 dB De-emphasis
 - Requires additional compliance patterns for Tx testing
- Host or device loss that exceeds 8.5dB may required repeater
 - Need end-to-end training -> link aware repeaters

lektro

* Items in red indicate new as Aug 2014 release

23 dB Reference Channel Loss

Host (Type 3 PCB)

Dev (Type 3 PCB)

8.5dB Host

6dB Cable

8.5dB Device

Tektronix[•]

Type-C Comparison

- Rounded, reversible, flip-able
- ~25% less width vs.µB
- Signaling
 - Two SS differential pairs
 - Vbus power

Δ2

- Configuration Channel (CC)

Δ4

Δ5

- USB 2.0 differential pair
- Plug power (Vconn)

Δ3

Tektronix[®]

											7.1
GND	TX1+	TX1-	VBUS	CC	D+	D-	SBU1	VBUS	RX2-	RX2+	GND
GND	RX1+	RX1-	VBUS	SBU2			VCONN	VBUS	TX2-	TX2+	GND
B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1

Δ6

Δ1

Connector Transition

Legacy Cables

Plug 1	Plug 2	Version	Length
А	С	USB 2.0	≤ 4m
А	С	USB 3.1 Gen2	≤ 1m
С	В	USB 2.0	≤ 4m
С	В	USB 3.1 Gen2	≤ 1m
С	Micro-B	USB 2.0	≤ 2m
С	Micro-B	USB 3.1 Gen2	≤ 1m

Cable (C to Micro-B)

Defined Adapters

Plug 1	Plug 2	Version	Length
С	Micro-B	USB 2.0	≤ 0.15 m
С	А	USB 3.1 Gen1	≤ 0.15 m

USB Power

- USB 3.0 power handling -> Up to 900 mA (Nov 2008)
- Battery Charging (BC 1.2, Dec 2010)
 - Increases charging of up to 1.5 A
 - No simultaneous data transfer in high power mode
- **Power Delivery** (PD 2.0, August 2014) specification
 - Up to 100W with switchable power delivery source
 - Switchable power delivery source without changing cable direction

Transmitter Compliance Test

Entering to Compliance Mode for Transmitter test –Compliance TX

A Tektronix Company

USB3.1 Transmitter Compliance Testing Patterns

Table 6-13. Compliance Pattern Sequences

Compliance Pattern	Value	Description
CP0	D0.0 scrambled	A pseudo-random data pattern that is exactly the same as logical idle (refer to Chapter 7) but does not include SKP sequences.
CP1	D10.2	Nyquist frequency
CP2	D24.3	Nyquist/2
CP3	K28.5	COM pattern
CP4	LFPS	The low frequency periodic signaling pattern
CP5	K28.7	With de-emphasis
CP6	K28.7	Without de-emphasis
CP7	50-250 1's and 0's	With de-emphasis. Repeating 50-250 1's and then 50-250 0's.
CP8	50-250 1's and 0's	With without de-emphasis. Repeating 50-250 1's and then 50-250 0's.
CP9		Pseudo-random data pattern (see section 6.4.4.1)
CP10	AAh	Nyquist pattern at 10Gb/s. This is not 128b132b encoded.
CP11	CCh	Nyquist/2 at 10Gb/s, This is not 128b132b encoded.
CP12	LFSR15	Uncoded LFSR15 for PHY level testing and fault isolation. This is not 128b132b encoded.

Note: Unless otherwise noted, scrambling is disabled for compliance patterns.

- LFPS, CP9,CP10 are used for Compliance testing for TX
- CP0 through CP8 are transmitted at Gen 1 rate, while CP9 through CP12 are transmitted at Gen 2 rate.
- Gen 2 compliance pattern comprises a pseudo-random data pattern
- The pattern repeats every 65536 symbols and starts with a SYNC Ordered Set

LFPS plus Encoding for USB3.1

Table 6-31. Binary Representation of Polling.LFPS

tRepeat (us)	Logic value
6~9	·0·
11~14	ʻ1'
9~11	illegal

- SuperSpeed+ identity check
- tRepeat Modulation
- SCD1.LFPS (4'b0010)
- SCD2.LFPS (4'b1101)

LFPS Based PWM Signaling (LBPM)

Rate (speed and lane) announcement and negotiation

- Repeater declaration
- Power state transition in repeater

USB 3.1 Transmitter Measurement Overview

Spec Reference	Parameter			
Table 6-16	SSC Modulation Rate SSC Deviation			Y:Time USB SSC-PROFILE1: Time Trend X:Time
Table 6-17	Unit Interval including SSC Maximum Slew Rate (5 GT/s) SSC df/dt (10 GT/s)		- Clock	$\bigvee \bigvee \bigvee \lor \lor$
Table 6-17	Differential p-p Tx Voltage Swing Low-power Differential p-p Tx Voltage Swing De-emphasized Output Voltage Ratio (5 GT/s)			Y:VoltageMask Hits1: Eye Diagram X:Time
Table 6-18	Tx Min Pulse Deterministic Min Pulse Transmitter DC Common Mode Voltage Tx AC Common Mode Voltage Active		_ PHY (CP9)*	
Table 6-19	Transmitter Eye RJ/DJ/TJ - Dual Dirac at 10–12 BER			
Table 6-28	LFPS Common Mode Voltage LFPS Differential Voltage LFPS Rise Time LFPS Fall Time LFPS Duty Cycle LFPS tPeriod LFPS tPeriod			Eye: Al Bits Offset: 0.0077441 Uis: 6000:999277, Total 6000:999277 Mask: USB 3_0_SSP_Rx, Normative mak
Table 6-29	LFPS tBurst LFPS tRepeat		-LFP3	
Table 6-31	LFPS tRepeat-0 (10 GT/s) LFPS tRepeat-1 (10 GT/s)			
Table 6-32	LFPS Pulse Width Modulation (10 GT/s) tLFPS-0 (10 GT/s) tLFPS-1 (10 GT/s)			
	ktronix 55W-26800-1	-		Tektronix [®]

USB3.1 Transmitter Compliance Testing

- 1. Connect DUT to scope via test fixture.
- 2. Transmit CP10 (clock) & measure 10⁶ consecutive UI
 - This step used to measure RJ
 - Requires toggling from default CP0 up to CP10
- 3. Repeat with CP9 (scrambled data pattern)
 - Will combine RJ (step 2) with DJ to extrapolate TJ (step5)
- 4. Post-process the waveforms with the compliance channel, the reference CTLE, & jitter transfer function
 - Channels are S-Parameter-based and are embedded into captured waveform
- 5. Extrapolate jitter to 10⁻¹² BER

Spec	Min	Max	Units
Eye Height	70	1200	mV
Dj @ 10 ⁻¹² BER		0.530	UI
Rj @ 10 ⁻¹² BER		0.184	UI
Tj @ 10 ⁻¹² BER		0.714	UI

USB3.1Transmitter Compliance Testing

Table 6-13. Compliance Pattern Sequences

Compliance Pattern	Value	Description
CP0	D0.0 scrambled	A pseudo-random data pattern that is exactly the same as logical idle (refer to Chapter 7) but does not include SKP sequences.
CP1	D10.2	Nyquist frequency
CP2	D24.3	Nyquist/2
CP3	K28.5	COM pattern
CP4	LFPS	The low frequency periodic signaling pattern
CP5	K28.7	With de-emphasis
CP6	K28.7	Without de-emphasis
CP7	50-250 1's and 0's	With de-emphasis. Repeating 50-250 1's and then 50-250 0's.
CP8	50-250 1's and 0's	With without de-emphasis. Repeating 50-250 1's and then 50-250 0's.
CP9		Pseudo-random data pattern (see section 6.4.4.1)
CP10	AAh	Nyquist pattern at 10Gb/s. This is not 128b132b encoded.
CP11	CCh	Nyquist/2 at 10Gb/s, This is not 128b132b encoded.
CP12	LFSR15	Uncoded LFSR15 for PHY level testing and fault isolation. This is not 128b132b encoded.

- CP0 through CP8 are transmitted at Gen 1 rate, while CP9 through CP12 are transmitted at Gen 2 rate.
- Gen 2 compliance pattern comprises a pseudo-random data pattern

Tektronix[®]

The pattern repeats every 65536 symbols and starts with a SYNC Ordered Set

Note: Unless otherwise noted, scrambling is disabled for compliance patterns.

Transmitter Capture and Channel Embed

- Capture CP9 (data) and CP10 (clock)
- Input reference channel models

CP9 Scrambled Pattern (TP0)

CP9 Scrambled Pattern (TP1)

Reference Tx Equalization

- USB channel profiles are dynamic (consumer)
- Need flexible solution space for link optimization
- Below are recommended Tx settings for good margin with target reference channels

Host/Device Loss	<3.5dB	≥ 3.5dB
C ₋₁	0.000	-0.125
C ₁	-0.100	-0.125
Va/Vd	1.00	0.80
Vb/Vd	0.75	0.55
Vd/Vd	0.75	0.75

Reference RX Equalizer

- Far End (TP1) Eye closed
- Need to open eye with EQ
- Adaptation only for Rx

A Tektronix Company

- No back channel Tx negotiation
- Iterate through multiple CTLE gain settings + 1-tap DFE

Transmitter Validation Example

Find optimum Eye height vs. Rx EQ –CTLE and DFE

Transmitter Validation Example - DPOJET

Measure Eye height and jitter at TP1

Tektronix[®]

TekExpress USBSSP-TX Software

- Automates USB 3.1 gen1 & gen2 electrical tests
- Built-in control of LFPS generator for pattern toggle
 - CP0 – CP12
- Use preferred operating mode for your application

Compliance: Full automation of ping.LFPS, analysis and reporting
User-defined: Custom channel characterization and test limits

- **Debug:** DPOJET based manual measurements with expanded jitter analysis and plotting capabilities

USB 3.1 Recommended Transmitter Solution

- ≥ 23 GHz BW, 100 GS/sec preferred
- >10M minimum record length allows capture of 1M UI at 100 GS/sec, no interpolation.
- DPOJET for advanced jitter/eye analysis (Option DJA)
- SDLA for channel embedding and cycling through 7 CTLE/1 DFE settings (Option SDLA64)
- TekExpress automation software for USB 3.1 gen1/gen2 physical layer validation (Option USBSSP-TX)

1 DUT to Duttot Image: Selection 2 Test Solection Acquisitions Use pro-recorded waveform files 3 Acquisitions Image: Device Image: Test Mode Image: Test Mode 4 Configuration Image: Test Mode Image: Test Mode 5 Preferences Image: Test Mode Image: Test Mode 5 Preferences Image: Test Mode Image: Test Mode 6 Configuration Image: Test Mode Image: Test Mode 7 Preferences Image: Test Mode Image: Test Mode 6 Optimize Image: Test Mode Image: Test Mode 9 Deferroed SSP_Optimize Image: Test Mode Image: Test Mode 9 Optimize Image: Test Mode Image: Test Mode Image: Test Mode Image: Test Mode 9 Deferroed	1 DUT to Duttot 2 Test Solection 3 Acquisitions 4 Configuration 5 Preferences 9 Preferences 1 Dutt to Duttot 0 Device 1 Dutt to Duttot 0 Device 1 Duttot		morap				Options &
Text Solection Acquisitions Configuration Preferences Preferences Device Profile USES Gen2 Data Rate USES Gen2 Device Profile Uses Gen2 Device Profile Uses Gen2 Text Method Text Method Compliance (TP+1) - Far End P Spread Spectrum Closking Compliance (TP+1) - Far End P Compliance (TP+1) - Far End	Prefsrences Acquisitions Configuration Prefsrences Output Uses Server Profile Uses Server Profile Uses Nethods Test Method OPDICE Test Method Test Method OPDICE Test Method Test Me	1 DUT		1		3	
S Preferences USB3 Gard2 Born Image: Complete compl	S Preferences USBS Gen2 Bon Device Profile Test Method DPOLIT Test Method DPOLIT Test Part Compliance (TP1) - Far End P Embed USBS SP_De-embed_Tx Embed USBS SP_Casks.Rt - CTLE	2 Test Selection 3 Acquisitions 4 Configuration	Acquire live w Select DUT Device Test Mode Compliance	evelorms	Use pre-record	ed waveform likes	
USES Cent USES Cent USES Cent USES Cent Compliance (TP1) - Far End POLAT Test Part Compliance (TP1) - Far End POLE Compliance (TP1	USB3 Gini USB3 Gini DPDJET Test Nethod DPDJET Test Pain Compliance (TP1) - Far End ♥ ?? Spread Spectrum Clooking Compliance (TP1) - Far End ♥ ?? Spread Spectrum Clooking Compliance (TP1) - Far End ♥ ?? Spread Spectrum Clooking DPEmode SSP_De-ambed_Tx_Device.ht • Embed USBSSP_Cable.ht • Compliance fairm	5 Preferences	Version USB3 Gen2 Device Profile	•	Data Rata Both	•	
Test Part Compliance (TP1) - Far End	Text Part Compliance (TP1) - Far End		USID Gent Test Method DPDJET	ISIL3 Gen2			1
Compared (199), the ball demonstrate Mar. 2. De-Embed SSP, De-ambed, Tx, Device.ht Inc. 2. Embed U(6055P_Caste Ht Inc. 2. OTLE Optimize Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc.	Companyor (1991), the last internation for the Mar. Die Embed SSP, Devembed, Tx, Device, ft Embed USSSSP, Cable, Mr. 2 OTLE Optimize Termined form		Test Pani Co	mpliance (TP	1) - Far End	😨 🖾 Spread Spec	trum Clocking
Emited USBSSP_Cable.it: CTLE Optimize Two makes term	Crite Optimize		Compliance ITP	5SP_De-emb	ed_Tx_Device.ft		
COLE Opimize Territori Iterritori	S. CTLE Optimize Tur nave films		E Embed	USBSSP_Cel	de.Mt		
			CO OTLE	Oplimize			chime

Avorali lest nesolt 😏 Pasi	3		Preferences
Test Harris	PassFall	Value	Nargit
C ULLinit Interval	😨 Pass	200.436 ps	496,283 fs & 623,717 fs
UTx-Dell-PP-Differentia	O Pass	311.173 mV	211.173 mV & 888.827 mV
TCDR_Slow_Max-Maximum Slow Rate	O Pass	4.581 ms/s	5.319 ms/s
Mask Hits	O Pass	0.000	0.000
Jitter-Dual Dirac	Pass	28.253 ps	57.747 ps
 Eye Height - Transmitter Eye Mask 	O Pass	193.740 mV	93.740 mV & 1.006 V
Withgeer	Pass	126.156 ps	58.156 ps
Ri-Tx random	O Pass	1.318 ps	1.972 ps
3 TSSC-Freq-Dev-Max	O Pass	65.062 ppm (Max)	385.062 ppm & 234.938 ppm
3 TSSC-Freq-Dev-Max	O Pass	-46.745 ppm (Miz)	253.255 ppm & 346.745 ppm
3 TSSC-Freq-Dev-Min	O Pass	-4.416 kppm (Max)	884.302 ppm & 2.716 kppm
3 TSSC-Freq-Dev-Min	Pass	-4.517 kppm (Min)	782.855 ppm & 2.817 kppm
TSSC Mod-Rate - SSC Modulation rate	Pass	31.344 kHz	1.344 kHz & 1.656 kHz
∃ TSSC-USB Profile	O Pass	200.449 ps	200.449 ps
3 TJ-Tx total jitter-Dual Dirac at 10E-12 BER	Pass	46.965 ps	85.035 ps

Receiver Compliance Test

USB 3.1 Receiver Testing Overview

- A jitter tolerance test is required for certification, though debug and characterization capabilities are needed to ensure that receivers will work in real world conditions
 - Send specific test data patterns to the device-under-test (DUT) through a known channel (fixtures and cables)
 - Add a specific "recipe" of stresses and de-emphasis
 - Command the DUT into loopback mode (far-end retimed)
 - Return "echoed" data to a BERT
 - Detected errors are inferred to be a result of bad DUT receiver decisions

Polling Sub-states – Loopback

A Tektronix Company

Receiver Testing

- Jitter Tolerance (JTOL) with swept jitter profile, reference channel
 - Verify CDR tracking and ISI compensation
- Link optimization/training critical
 - No back channel negotiation
- Return "echoed" data to a BERT (loopback)
- Detected errors are inferred to be a result of bad DUT receiver decisions

Receiver Tolerance Test Overview

- 7Test Points
- SSC Clocking is enabled
- BER Test is performed at 10⁻¹⁰
- Preshoot/De-emphasis enabled
- Stress verified by TJ/Eye Height
- Each SJ term in the table below is tested one at a time after the device is in loopback mode

Frequency	SJ	RJ
500kHz	476ps	1.308ps RMS
1MHz	203ps	1.308ps RMS
2MHz	87ps	1.308ps RMS
4MHz	37ps	1.308ps RMS
7.5MHz	17ps	1.308ps RMS
50MHz	17ps	1.308ps RMS
100MHz	17ps	1.308ps RMS

MHZ	Test	Template	Bits	Errors	BER	Status	Margin
0.50	476.00%	476.00%	3.00e010	0	0.00e000	Passed	0.00%
1.00	203.00%	203.00%	3.00e010	0	0.00e000	Passed	0.00%
2.00	87.00%	87.00%	3.00e010	0	0.00e000	Passed	0.00%
4.00	37.00%	37.00%	3.00e010	0	0.00e000	Passed	0.00%
7.50	17.00%	17.00%	3.00e010	0	0.00e000	Passed	0.00%
50.00	17.00%	17.00%	3.00e010	0	0.00e000	Passed	0.00%
100.00	17.00%	17.00%	3.00e010	0	0.00e000	Passed	0.00%

BERTScope USB 3.1 Receiver configuration solution

- CR125A
 - Clock Recovery
- BSA125C
 - BERTScope
- USB3.1 automation software
- DPP125C
 - De-emphasis
- USB Switch
 - Creates LFPS required to

initiate Loopback-mode

USB3.1 Rx compliance RX testing using BERTSCOPE

- USB-IF 'Compliance Channel
- Jitter tolerance testing using BERTSCOPE
- Auto Calibration & measurement Tools
- Powerful Jitter insertion function for Developers.

Eye Calibration Cabling Diagram

USB3.1_Rx Calibration Configuration with BERTScope

USB3.1_Rx Testing Configuration with BERTScope

Loopback Initiation

	Ber Loopback		
The for	Step	Status Pattern files loaded	
	Start		
	Use ED All-zeros	ED set to All-Zeros pattern (50 mV thresh) ok	
	DUT Power Reset	DUT power reset is ok	
	Check Edge Density	Edge density is ok	
	Check CR Lock	CR lock is ok	
	Check ED Clock	ED clock is ok Autoalign ok	
0	Autoalign ED		
	Set ED Pattern	UserShiftNSync pattern is set ok	
	Check ED Sync	ED synchronization is ok	
	Success	DUT is in Loopback mode	
	<		
	Success	Method: Single Shot 💙 Start	

- Loopback initiation prepares devices for receiver testing
- Automation software controls the loopback sequence, eliminating guesswork so users focus on testing and debugging

Automation Software Makes Testing Even Easier

Automation Software

- Results stored to database for easy recall and management
- HTML style test reports

- Cabling diagrams for straightforward setups
- Automated Stressed Eye Calibration

Summary

- New opportunity for growth with USB 10 Gb/s
- Adds <u>additional</u> challenges beyond legacy requirements (backwards compatibility)
- Higher performance, more complex design but feasible within current infrastructure
- Extensive PHY validation tools for early designs
 - New USB SSP DPOJET setups for Tx validation
 - BERTScope USB library with JTOL templates
 - DSA8300 Sampling oscilloscope for channel characterization
 - Test procedures documented in Methods of Implementation (MOI)

Tektronix MHL 3.2 TX,RX Solution

MHL - CTS 3.2

MHL Consortium and Tektronix has worked together on the 3.0 version MHL specifications.

- Data rate changes to 6Gbps.

- MHL Clock is no longer common mode but transmitted on eCBUS
- eCBUS has bi-drectional ecbus data and clock
- New test procedures for Source, Sink and Dongle
- Most of the CTS 2.1 tests need to be used to ensure backward compatibility exists.

MHL 3.0/CTS3.2 - Signaling

Figure 16-4. Voltage and Timing Parameters of a Differential Signal and a Single-Ended Signal

(a) Single-Ended MHL Clock and eCBUS Forward Data Waveform at TP1 without eCBUS Backward Data

(b) Single-Ended eCBUS Backward Data Waveform at TP2 with MHL Clock. eCBUS Forward Data Signal is not present.

(c) Single-Ended eCBUS Backward Data Waveform at TP2 after MHL Clock is subtracted. eCBUS Forward Data Signal is not present.

Figure 16-5. Voltage and Timing Parameters of a Single-ended MHL Clock and eCBUS Forward and Backward Signals

- VDF_SWING in Figure 16-4 represents
 - VDF_SWING_DF_TMDS_DATA
 - VDF_SWING_DF_MHL_CLK
 - VDF_SWING_DF_eCBUS_FWD
- VSE_HIGH represents
 - VSE_HIGH_DF_TMDS_DATA
 - VSE_HIGH_DF_MHL_CLK
 - VSE_HIGH_DF_eCBUS_FWD
- VSE_LOW represents
 - VSE_LOW_DF_TMDS_DATA
 - VSE_LOW_DF_MHL_CLK
 - VSE_LOW_DF_eCBUS_FWD

Figure 16-6. Voltage and Timing Parameters of a Differential MHL Clock and eCBUS Forward and Backward Signals

MHL 3.0/CTS3.2

- EQ and Cable Emulator

Reference Cable Equalizer

- Two reference cable equalizers are used
- Used to produce the MHL eye diagram and clock jitter measurements at TP2 for TMDS and eCBUS forward signals,
- Used to produce at TP1 for eCBUS backward signals
- > 6Gbps reference cable equalizer
 - Shall meet the transfer function shown in Figure 16-15 (Differential)
 - Applied to the TMDS signal at the 6Gbps data rate.
- > MHL 2.1 reference cable equalizer
 - Applied to 3Gbps and to 1.5Gbps TMDS signals, and to eCBUS-D signals
 - Applied to the single-ended MHL clock signal when the single-ended MHL clock signal is tested for clock jitter, TMDS eye diagram, and eCBUS-S data eye diagram tests.

Worst Case Cable Emulator

 The worst case cable emulator is used to perform TP2 tests for TMDS, eCBUS Forward signals and TP1 tests for eCBUS Backward signal

Tektronix MHL 3.2 CTS Tx Solution- Test Details

DUT	Туре	TEST		
	Output	3.7.2.1	Single-Ended high level output voltage: Differential TMDS Data+/-	
		3.7.2.2	Single-Ended low level output voltage: Differential TMDS Data+/-	
		3.7.2.5	Differential output swing voltage: Differential TMDS Data	
		3.7.2.7	Single-Ended high level output voltage: Single-Ended MHL CLK, Single-Ended eCBUS Forward	
		3.7.2.8	Single-Ended low level output voltage: Single-Ended MHL CLK, Single-Ended eCBUS Forward	
		3.7.2.9	Single-Ended output swing voltage: Single-Ended MHL CLK, Single-Ended eCBUS Forward	
		3.7.2.13	Rise Time, Differential TMDS Data	
		3.7.2.14	Fall Time, Differential TMDS Data	
MHL		3.7.2.17	Peak-Peak Amplitude: Differential TMDS Data	
Source		3.7.2.20	Single_Ended MHL Clock Frequency	
Source		3.7.2.23	Rise Time: Single-ended MHL Clock	
		3.7.2.24	Fall Time: Single-ended MHL Clock, Single-ended eCBUS Forward	
		3.7.7.25	Peak-Peak Amplitude, eCBUS-S Forward	
		3.7.7.26	Single-Ended MHL Clock Jitter	
		3.7.7.27	MHL3 Differential Eye Diagram Mask at TP2 for TMDS Data	
		3.7.2.29	MHL3 Single-ended Eye Diagram Mask at TP2 for Single-Ended eCBUS FWD Data	
		3.7.2.33	Single-Ended input swing voltage: Single-Ended eCBUS Backward	
	Input	3.7.2.36	MHL3 Single-Ended Eye Diagram Mask at TP1 for Single-Ended eCBUS BWD Data	
	Impedance	3.7.2.37	TMDS+ and TMDS- Differential Impedance through Connections	
			TMDS+ and TMDS- Differential Impedance at Termination	
		3.7.2.39	eCBUS Single-Ended Impedance through Connections	
			eCBUS Single-Ended Impedance at Termination	

Tektronix MHL 3.2 CTS Rx Solution- Test Details

DUT	Туре	TEST		
MHL Sink	Input	4.7.2.3	Differential input swing voltage: Differential TMDS Dat	
		4.7.2.6	Single-Ended input swing voltage: Single-Ended MHL CLK, Single-Ended eCBUS Forward	
		4.7.2.7	Differential Intra-Pair Skew: Differential TMDS Data +/-	
		4.7.2.10	Jitter Tolerance of Single-Ended MHL CLK, eCBUS-S FWD Data and Differential TMDS Data	
	Output	4.7.2.14	Single-Ended high level output voltage:Single-Ended eCBUS Backward	
		4.7.2.15	Single-Ended low level output voltage:Single-Ended eCBUS Backward	
		4.7.2.16	Single-Ended output swing voltage:Single-Ended eCBUS Backward	
		4.7.2.20	Rise time, Single-Ended eCBUS Backward	
		4.7.2.21	Fall Time, Single-Ended eCBUS Backward	
		4.7.2.22	Peak-peak Amplitude, eCBUS-S Backward	
		4.7.2.24	MHL3 Eye Diagram Mask at TP1 for Single-Ended eCBUS Backward Data	
	Impedance	4.7.2.25	TMDS+ and TMDS- Differential Impedance through Connections	
			TMDS+ and TMDS- Differential Impedance at Termination	
		4.7.2.27	eCBUS Single-Ended Impedance through Connections	
			eCBUS Single-Ended Impedance at Termination	

Tektronix MHL 3.2 CTS Transmitter/Receiver Solution

Transmitter Tests

- AV Link Data tests(TMDS)
- Clock Tests
- eCBUS FWD Tests
- eCBus BWD Tests

ReceiverTests

- SJT
- Intra pair skew
- eCBUS FWD Tests
- eCBus BWD Tests

Figure 3-2. Test configuration at TP2 for source TMDS output and eCBUS-S FWD output

HDMI2.0 TX,RX Solution

-High Definition Multimedia Interface

Proposed HDMI 2.0 features change

- Uses same Cat 2 Cable and HDMI 1.4b connector
- Support 4K 2K 4:4:4 60 Hz 594Mhz
- Support 4K 2K 4:2:0 297Mhz
- Direct Attach device support
- Low level Bit error rate testing
- Scrambling is likely to be introduced for rates >340Mcps.

Source Testing (1.4b Vs 2.0)

- Most Source tests are likely to be same as HDMI 1.4b but for Eye Diagram test.
- Source Eye Diagram test is measured at TP2_EQ with Single ended testing
- TP2 is the signal after passing along a worst cable.
 - Worst cable has worst attenuation and skew of 112ps.
- Min 8GHz scope to 16GHz scope
- **Fixtures and Probes**

Likely Source Electrical tests

Test ID HF1-1: Source TMDS Electrical – 340-600Mcsc – V_L

Test ID HF1-2: Source TMDS Electrical – 340-600Mcsc – T_{RISE}, T_{FALL}

Test ID HF1-3: Source TMDS Electrical – 340-600Mcsc – Inter-Pair Skew

Test ID HF1-4: Source TMDS Electrical – 340-600Mcsc – Intra-Pair Skew

Test ID HF1-5: Source TMDS Electrical – 340-600Mcsc – Differential Voltage

Test ID HF1-6: Source TMDS Electrical – 340-600Mcsc – Clock Duty Cycle

Test ID HF1-7: Source TMDS Electrical – 340-600Mcsc – Clock Jitter

Test ID HF1-8: Source TMDS Electrical – 340-600Mcsc – Data Eye Diagram

Test ID HF1-9: Source TMDS Electrical – 340-600Mcsc – Differential Impedance

HDMI 2.0 Sink Test setup –Direct Synthesis

- Test ID HF2-1: Sink TMDS Electrical 340-600Mcsc Min/Max Differential Swing Tolerance
- Test ID HF2-2: Sink TMDS Electrical 340-600Mcsc Intra-Pair Skew
- Test ID HF2-3: Sink TMDS Electrical 340-600Mcsc Jitter Tolerance
- Test ID HF2-4: Sink TMDS Electrical 340-600Mcsc Differential Impedance (performed using sampling scope)

A Tektronix Company

Source Sink Testing 1.4b Vs 2.0

SOURCE

- DPO/DSA /MSO 70164C/D with 10XL-Minimum 16GHz BW
- Opt HDM
- Opt HT3 for 1.4 testing.
- HDMI 2.0 Fixture set(Bitifeye for now later will add Wilder)
- P7313SMA probes –Quantity 4

SINK

- Jitter Tolerance test needs +ve and –ve lanes tested with 112ps delay line
- Rest of the tests is similar to HDMI 1.4b tests
- 1.4b CTS test is a pre-requisite for HDMI 2.0
- Need AWG 70002A for HDMI 2.0 Compliance and Margin needs while AWG7122C is suitable for HDMI 2.0 Compliance testing only..
- Min 8GHz scope to 16GHz scope
- Fixtures and Probes
- HDM and HDM-DS Software (TekExpress Based)

Tektronix®

